LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High Impedance Single-Phase Faults Diagnosis in Transmission Lines via Deep Reinforcement Learning of Transfer Functions

Photo from wikipedia

Accurate and fast fault detection in transmission lines is of high importance to maintain the reliability of power systems. Most of the existing methods suffer from false detection of high-impedance… Click to show full abstract

Accurate and fast fault detection in transmission lines is of high importance to maintain the reliability of power systems. Most of the existing methods suffer from false detection of high-impedance faults. In this paper, the transfer function (TF) method is introduced to evaluate the effect of impedance and location of faults by analyzing the voltage and current signals in the frequency domain. Interpretation of the results of the TF method is considered as a weakness of this method. In order to alleviate this problem, a convolutional neural network (CNN) and the hybrid model of deep reinforcement learning (DRL) are utilized to identify and locate single-phase to ground short circuit faults in transmission lines. Single-phase to ground short circuit faults with various fault impedances are applied on an IEEE standard transmission line system. Then, the TF traces are calculated and are collected as input datasets for the proposed models. The fault location results for each network are evaluated via various statistical performance metrics such as correlation coefficient (R), mean squared error (MSE), and root mean squared error (RMSE). The R-value of the CNN and DRL models in fault identification is presented as 96.12% and 98.04%, respectively. Finally, in the early detection of single-phase to ground short circuit fault location (high impedance), the results revealed the efficiency of the DRL model with R=96.61% compared to CNN with R=95.21%.

Keywords: transmission; transmission lines; high impedance; single phase

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.