Due to recent increase in deployment of Cyber-Physical Industrial Control Systems in different critical infrastructures, addressing cyber-security challenges of these systems is vital for assuring their reliability and secure operation… Click to show full abstract
Due to recent increase in deployment of Cyber-Physical Industrial Control Systems in different critical infrastructures, addressing cyber-security challenges of these systems is vital for assuring their reliability and secure operation in presence of malicious cyber attacks. Towards this end, developing a testbed to generate real-time data-sets for critical infrastructure that would be utilized for validation of real-time attack detection algorithms are indeed highly needed. This paper investigates and proposes the design and implementation of a cyber-physical industrial control system testbed where the Tennessee Eastman process is simulated in real-time on a PC and the closed-loop controllers are implemented on the Siemens PLCs. False data injection cyber attacks are injected to the developed testbed through the man-in-the-middle structure where the malicious hackers can in real-time modify the sensor measurements that are sent to the PLCs. Furthermore, various cyber attack detection algorithms are developed and implemented in real-time on the testbed and their performance and capabilities are compared and evaluated.
               
Click one of the above tabs to view related content.