LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple Delay Identification in Long Interconnects via LS-SVM Regression

Photo by averey from unsplash

This work presents a novel approach for the accurate estimation of multiple time-delays from the frequency response of a distributed system. The proposed approach is based on a powerful and… Click to show full abstract

This work presents a novel approach for the accurate estimation of multiple time-delays from the frequency response of a distributed system. The proposed approach is based on a powerful and flexible machine learning technique, namely, the least-square support vector machine (LS-SVM). The LS-SVM regression is used to construct a metamodel of the transfer function describing a generic linear time-invariant system in a delayed-rational form. Specifically, after some manipulation the LS-SVM model precisely identifies the dominant propagation delays of the original system. The essential steps and critical criteria for the delay identification procedure are carefully discussed throughout the paper. Once the system delays have been identified, the rational part of the metamodel expansion is then obtained by means of a progressive application of the conventional vector fitting algorithm. Numerical examples are presented to illustrate the feasibility and performance of the proposed technique and to compare its performances with what is provided by state-of-the-art techniques. The results clearly highlight the capability of the proposed approach to identify the dominant delays in distributed systems, thus allowing to construct compact delayed rational models.

Keywords: svm regression; system; delay identification

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.