LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Access Control in Edge-Aided Disaster Response: A Deep Reinforcement Learning-Based Approach

Photo from wikipedia

The communication infrastructure is most likely to be damaged after a major disaster occurred, which would lead to further chaos in the disaster stricken area. Modern rescue activities heavily rely… Click to show full abstract

The communication infrastructure is most likely to be damaged after a major disaster occurred, which would lead to further chaos in the disaster stricken area. Modern rescue activities heavily rely on the wireless communications, such as safety status report, disrupted area monitoring, evacuation instruction, rescue coordination, etc. Large amount of data generated from victims, sensors and responders must be delivered and processed in a fast and reliable way, even when the normal communication infrastructure is degraded or destroyed. To this end, reconstructing the post-disaster network by deploying MDRU (Movable and Deployable Resource Unit) and relay unit at edge is a very promising solution. However, the optimal wireless access control in this heterogeneous hastily formed network is extremely challenging, due to the frequent varying environment and the lack of statistics information in advance in post-disaster scenarios. In this paper, we propose a learning based wireless access control approach for edge-aided disaster response network. More specifically, we model the wireless access control procedure as a discrete-time single agent Markov decision process, and solve the problem by exploiting deep reinforcement learning technique. By extensive simulation results, we show that the proposed mechanism significantly outperforms the baseline schemes in terms of delay and packet drop rate.

Keywords: access; wireless access; edge; access control; disaster

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.