In this work, a capacitorless one-transistor dynamic random access memory (1T-DRAM) based on a polycrystalline silicon (poly-Si) metal–oxide–semiconductor field-effect transistor was designed and analyzed through a technology computer-aided design (TCAD)… Click to show full abstract
In this work, a capacitorless one-transistor dynamic random access memory (1T-DRAM) based on a polycrystalline silicon (poly-Si) metal–oxide–semiconductor field-effect transistor was designed and analyzed through a technology computer-aided design (TCAD) simulation. A poly-Si thin film was utilized within the device because of several advantages, including its low fabrication cost and the feasibility of its use in high-density three-dimensional (3D) memory arrays. An asymmetric dual-gate structure is proposed to perform the write “1” operation and achieve high retention characteristics. The proposed 1T-DRAM cell demonstrates a high sensing margin of
               
Click one of the above tabs to view related content.