LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Context-Aware Software Vulnerability Classification Using Machine Learning

Photo from wikipedia

Managing the vulnerabilities reported by a number of security scanning software is a tedious and time-consuming task, especially in large-scale, modern communication networks. Particular software vulnerabilities can have a range… Click to show full abstract

Managing the vulnerabilities reported by a number of security scanning software is a tedious and time-consuming task, especially in large-scale, modern communication networks. Particular software vulnerabilities can have a range of impacts on an IT system depending on the context in which they were detected. Moreover, scanning software can report thousands of issues, which makes performing operations, such as analysis and prioritization, very costly from an organizational point of view. In this paper, we propose a context-aware software vulnerability classification system, Mixeway, that relies on machine learning to automatize the whole process. By training a model using known and analyzed vulnerabilities together with Natural Language Processing techniques to properly manage the information that the vulnerability description contains, we show that it is possible to predict the class that defines how severe the detected vulnerability is. The experimental results obtained on a real-life dataset collected by Mixeway for about 12 months from the infrastructure of one of the major mobile network operators in Poland prove that the proposed solution is useful and effective.

Keywords: vulnerability classification; context aware; vulnerability; software; software vulnerability; aware software

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.