LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MADMAX: Browser-Based Malicious Domain Detection Through Extreme Learning Machine

Photo from wikipedia

Fast and accurate malicious domain detection is an essential research theme to prevent cybercrime, and machine learning is an attractive approach for detecting unseen malicious domains in the past decade.… Click to show full abstract

Fast and accurate malicious domain detection is an essential research theme to prevent cybercrime, and machine learning is an attractive approach for detecting unseen malicious domains in the past decade. In this paper, we present MADMAX (MAchine learning-baseD MAlicious domain eXhauster), a browser-based application leveraging extreme learning machine (ELM) for malicious domain detection. In contrast to the existing work of ELM-based domain detection, MADMAX newly introduces two methods, i.e., selection of optimized features to provide higher accuracy and throughput based on permutation importance and real-time training to retrain a model with an updated malicious dataset for continuous malicious domain detection. We demonstrate that MADMAX fairly outperforms the existing work with respect to accuracy and throughput by virtue of the selection of optimized features. Moreover, we also confirm a model with real-time training stably detects even unseen malicious domains, whereas accuracy of a model without the real-time training decreases due to the unseen domains. The source codes of MADMAX is publicly available via GitHub.

Keywords: malicious domain; machine; domain detection; domain; based malicious

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.