LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic Detection of Citrus Fruit and Leaves Diseases Using Deep Neural Network Model

Photo from wikipedia

Citrus fruit diseases are the major cause of extreme citrus fruit yield declines. As a result, designing an automated detection system for citrus plant diseases is important. Deep learning methods… Click to show full abstract

Citrus fruit diseases are the major cause of extreme citrus fruit yield declines. As a result, designing an automated detection system for citrus plant diseases is important. Deep learning methods have recently obtained promising results in a number of artificial intelligence issues, leading us to apply them to the challenge of recognizing citrus fruit and leaf diseases. In this paper, an integrated approach is used to suggest a convolutional neural networks (CNNs) model. The proposed CNN model is intended to differentiate healthy fruits and leaves from fruits/leaves with common citrus diseases such as black spot, canker, scab, greening, and Melanose. The proposed CNN model extracts complementary discriminative features by integrating multiple layers. The CNN model was checked against many state-of-the-art deep learning models on the Citrus and PlantVillage datasets. According to the experimental results, the CNN Model outperforms the competitors in a variety of measurement metrics. The CNN Model has a test accuracy of 94.55 percent, making it a valuable decision support tool for farmers looking to classify citrus fruit/leaf diseases.

Keywords: cnn model; citrus; model; citrus fruit; detection

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.