LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Generalized t-SNE Through the Lens of Information Geometry

Photo from wikipedia

t-SNE (t-distributed Stochastic Neighbor Embedding) is known to be one of the very powerful tools for dimensionality reduction and data visualization. By adopting the student’s t-distribution in the original SNE… Click to show full abstract

t-SNE (t-distributed Stochastic Neighbor Embedding) is known to be one of the very powerful tools for dimensionality reduction and data visualization. By adopting the student’s t-distribution in the original SNE (Stochastic Neighbor Embedding), t-SNE achieves faster and more stable learning. However, t-SNE still poses computational complexity due to its dependence on KL-divergence. Our goal is to extend t-SNE in a natural way by the framework of information geometry. Our generalized t-SNE can outperform the original t-SNE with a well-chosen set of parameters. Furthermore, the experimental results for MNIST, Fashion MNIST and COIL-20, show that our generalized t-SNE outperforms the original t-SNE.

Keywords: information geometry; generalized sne; original sne; geometry

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.