LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Breaking the Limits in Ternary Logic: An Ultra-Efficient Auto-Backup/Restore Nonvolatile Ternary Flip-Flop Using Negative Capacitance CNTFET Technology

Photo from wikipedia

Despite the advantages of ternary logic, it has suffered from excessive transistor count and limited noise margin. This work proposes an ultra-efficient nonvolatile ternary flip-flop (FF) based on negative capacitance… Click to show full abstract

Despite the advantages of ternary logic, it has suffered from excessive transistor count and limited noise margin. This work proposes an ultra-efficient nonvolatile ternary flip-flop (FF) based on negative capacitance carbon nanotube field-effect transistors (NC-CNTFETs). By harnessing the negative differential resistance effect in NC-CNTFETs, the proposed design is similar to a conventional volatile binary FF regarding the number of transistors and control signals. During a scheduled power gating or a sudden power outage, the proposed ternary FF benefits from an auto-backup/auto-restore capability without employing any additional transistors, nonvolatile devices, or control signals. This leads to zero device overhead, which is a breakthrough in designing nonvolatile memory circuits. On the other hand, the back-to-back slave latch’s hysteretic behavior provides an extraordinary static noise margin that transcends the noise margin of both conventional ternary and binary latches. The simulation results indicate that eliminating additional backup and restore circuitries provides 43% improvements in transistor count, 59% improvements in power saving and 98% improvements in energy-saving than state-of-the-art binary and ternary FFs. Moreover, the proposed design presents a 1.5 times higher static noise margin than the conventional binary and ternary FFs. Our proposed approach opens new doors in realizing ultra-efficient nonvolatile ternary circuits and systems in neuromorphic applications using ferroelectric-based transistors.

Keywords: noise margin; ultra efficient; backup; ternary logic; auto; nonvolatile ternary

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.