LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Thresholded Gabor-CNN Based Writer Identification System for Indic Scripts

Photo from wikipedia

Writer identification is the procedure of identifying individuals from handwriting. Writer identification is a common interest in biometric authentication and verification systems, and numerous studies are available for English, Chinese,… Click to show full abstract

Writer identification is the procedure of identifying individuals from handwriting. Writer identification is a common interest in biometric authentication and verification systems, and numerous studies are available for English, Chinese, Arabic, and Persian specific handwriting. This paper introduces a supervised offline Indic script writer identification system that can identify individuals using less than a single page of handwriting. A lightweight Convolutional Neural Network (CNN) architecture fused with non-trainable Gabor filters is used as an identification model that can recognize writers from scarce data. For the experiment, we used BanglaWriting dataset, which is openly available for Bengali writing and writer recognition. Further, we added Devanagari and Telugu datasets for evaluation. The overall evaluation shows that the proposed thresholded Gabor-based CNN architecture performs superior to numerous deep CNN architectures for Indic writer recognition.

Keywords: identification system; writer identification; identification; writer; thresholded gabor

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.