LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum-Resistant Cryptography for the Internet of Things Based on Location-Based Lattices

Photo from wikipedia

An important enabler of the Internet of Things (IoT) is the Narrow-Band Internet of Things (NB-IoT) technology, which is a 3GPP standards compliant connectivity solution. Quantum computing, another emerging technological… Click to show full abstract

An important enabler of the Internet of Things (IoT) is the Narrow-Band Internet of Things (NB-IoT) technology, which is a 3GPP standards compliant connectivity solution. Quantum computing, another emerging technological paradigm, promises novel compute opportunities but is also able to compromise cybersecurity ciphers. Therefore, improved methods to mitigate such security threats are needed. In this research, we propose a location-aware cryptographic system that guarantees post-quantum IoT security. The ultimate value of a location-driven cryptosystem is to use the geographic location as a player’s identity and credential. Position-driven cryptography using lattices is efficient and lightweight, and it can be used to protect sensitive and confidential data in many critical situations that rely heavily on exchanging confidential data. At the best of our knowledge, this research starts the study of unconditional-quantum-resistant-location-driven cryptography by using the Lattice problem for the IoT in a pre-and post-quantum world. Unlike existing schemes, the proposed cryptosystem is the first secure and unrestricted position-based protocol that guards against any number of collusion attackers and against quantum attacks. It has a guaranteed authentication process, solves the problems of distributing public keys by removing a public key infrastructure (PKI), offers secure NB-IoT without SIM cards, and resists location spoofing attacks. Furthermore, it can be generalized to any network – not just NB-IoT.

Keywords: internet things; cryptography; quantum resistant; location

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.