LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DPiT: Detecting Defects of Photovoltaic Solar Cells With Image Transformers

Photo by rgaleriacom from unsplash

Solar energy is one of the most important resources that can be a clean and renewable alternative to traditional fuels. The collection process of solar energy mainly rely on the… Click to show full abstract

Solar energy is one of the most important resources that can be a clean and renewable alternative to traditional fuels. The collection process of solar energy mainly rely on the photovoltaic solar cells. The defects, such as microcracks and finger interruption on the photovoltaic solar cells can reduce its efficiency a lot. To solve this problem, defects detection of solar cells have attracted attention from many researchers. In this paper, we propose a novel transformer based network to detect defects on solar cells efficiently and effectively. First, we introduce convolutions into the transformer to enable positional information and spatial context more accurate and precise. Secondly, cross window based multi-head self-attention (CW-MSA) is proposed to enlarge the window relation modeling capacity. Finally, we propose a multi-scale aggregation block to merge the low-level features into deep semantically strong features by attention. Extensive experiments on the elpv dataset demonstrate DPiT can consistently bring significant improvements over its strong baseline Swin Transformer with subtle extra computational overhead. The visualization results show that the proposed DPiT is able to detect various complex defects correctly. In particular, DPiT can achieve impressive 91.7 top-1 accuracy and greatly outperforms other competitive counterparts.

Keywords: dpit detecting; solar cells; photovoltaic solar; detecting defects; defects photovoltaic

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.