LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Urdu Sentiment Analysis via Multimodal Data Mining Based on Deep Learning Algorithms

Photo by dawson2406 from unsplash

Every day, a massive amount of text, audio, and video data is published on websites all over the world. This valuable data can be used to gauge global trends and… Click to show full abstract

Every day, a massive amount of text, audio, and video data is published on websites all over the world. This valuable data can be used to gauge global trends and public perceptions. Companies are showcasing their preferred advertisements to consumers based on their online behavioral trends. Carefully analyzing this raw data to uncover useful patterns is indeed a challenging task, even more so for a resource-constrained language such as Urdu. A unique Urdu language-based multimodal dataset containing 1372 expressions has been presented in this paper as a first step to address the challenge to reveal useful patterns. Secondly, we have also presented a novel framework for multimodal sentiment analysis (MSA) that incorporates acoustic, visual, and textual responses to detect context-aware sentiments. Furthermore, we have used both decision-level and feature-level fusion methods to improve sentiment polarity prediction. The experimental results demonstrated that integration of multimodal features improves the polarity detection capability of the proposed algorithm from 84.32% (with unimodal features) to 95.35% (with multimodal features).

Keywords: urdu sentiment; sentiment; analysis via; multimodal; sentiment analysis

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.