The deployment of the Millimeter-Wave (mm-Wave) band in 5G and beyond wireless communications networks is one of the emerging fields owing to its potential of providing extensive bandwidth. Frequency Hopping… Click to show full abstract
The deployment of the Millimeter-Wave (mm-Wave) band in 5G and beyond wireless communications networks is one of the emerging fields owing to its potential of providing extensive bandwidth. Frequency Hopping (FH) has a high potential for use in wireless networks due to its key advantages of spreading the interference over wide bandwidth and of providing diversity gain in counteracting frequency-selective fading. Furthermore, Fast Frequency Hopping (FFH) intrinsically amalgamated with directional Beamforming (BF) may overcome the impairments because of the path-loss of mm-Wave communications. Thus, we propose FFH assisted base-band precoding aided BF for mitigating the mm-wave channel impairments imposed by both fading as well as path loss, whilst relying on a minimal range of radio frequency chains. The mathematical analysis and simulation results demonstrate that hybrid precoded FFH is indeed a promising high-capacity technique of attaining both time- and frequency-domain diversity gains for the mm-Wave communications.
               
Click one of the above tabs to view related content.