LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Robust Offline Precomputed Optimal Feedforward Control Action for the Real Time Feedback/Feedforward Control of Double Pendulum Gantry Cranes

Photo by celpax from unsplash

This paper deals with FeedBack/ FeedForward (FB/FF) control of double pendulum gantry crane systems with payloads taking values over arbitrarily large intervals. The new proposed 2DoF control architecture is aimed… Click to show full abstract

This paper deals with FeedBack/ FeedForward (FB/FF) control of double pendulum gantry crane systems with payloads taking values over arbitrarily large intervals. The new proposed 2DoF control architecture is aimed at: 1) to speed up the horizontal payload transportation while minimizing the tracking error with respect to a desired trajectory; 2) to minimize the sway angles amplitude. The main features of the control design procedure are: 1) the dynamic output FB control is designed in order to ensure the robust stability of the closed loop system and the steady-state exact payload positioning; 2) the FF control action is given by the optimally weighted sum of the two contributions due to FF Plant Inversion (FFPI) and FF Closed Loop Inversion (FFCLI) control schemes; 3) the optimal robust FF control input is obtained as the solution of a min max optimization problem that can be solved offline with numerically efficient procedures; 4) the provided analytical closed form of the FF input in terms of a linear combination of polynomial B-splines basis functions allows an easy implementation on commercial devices.

Keywords: feedforward control; double pendulum; feedback feedforward; pendulum gantry; control double; control

Journal Title: IEEE Access
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.