LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cardamom Plant Disease Detection Approach Using EfficientNetV2

Photo by philldane from unsplash

Cardamom is a queen of spices. It is indigenously grown in the evergreen forests of Karnataka, Kerala, Tamil Nadu, and the northeastern states of India. India is the third largest… Click to show full abstract

Cardamom is a queen of spices. It is indigenously grown in the evergreen forests of Karnataka, Kerala, Tamil Nadu, and the northeastern states of India. India is the third largest producer of cardamom. Plant diseases cause a catastrophic influence on food production safety; they reduce the eminence and quantum of agricultural products. Plant diseases may cause significantly high loss or no harvest in dreadful cases. Various diseases and pests affect the growth of cardamom plants at different stages and crop yields. This study concentrated on two diseases of cardamom plants, Colletotrichum Blight and Phyllosticta Leaf Spot of cardamom and three diseases of grape, Black Rot, ESCA, and Isariopsis Leaf Spot. Various methods have been proposed for plant disease detection, and deep learning has become the preferred method because of its spectacular accomplishment. In this study, U2-Net was used to remove the unwanted background of an input image by selecting multiscale features. This work proposes a cardamom plant disease detection approach using the EfficientNetV2 model. A comprehensive set of experiments was carried out to ascertain the performance of the proposed approach and compare it with other models such as EfficientNet and Convolutional Neural Network (CNN). The experimental results showed that the proposed approach achieved a detection accuracy of 98.26%.

Keywords: cardamom; cardamom plant; plant disease; detection; plant; approach

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.