LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Forward Kinematics and Singularity Analyses of an Uncoupled Parallel Manipulator by Algebraic Screw Theory

Photo from wikipedia

In this contribution, the Jacobian analysis of a four-legged six-degrees-of-freedom decoupled parallel manipulator is carried out through the screw theory. As an intermediate step, for the sake of completeness the… Click to show full abstract

In this contribution, the Jacobian analysis of a four-legged six-degrees-of-freedom decoupled parallel manipulator is carried out through the screw theory. As an intermediate step, for the sake of completeness the inverse/forward displacement analysis as well as the computation of the workspace of the robot are achieved by taking advantage of the decoupled orientation and position of the moving platform. Afterward, the input/output equation of velocity of the parallel robot is obtained by harnessing of the properties of reciprocal screw systems. Once the Jacobian matrices are identified and investigated, the analysis of singularities for the robot manipulator emerges as a natural application of the Jacobian analysis. Numerical examples are included with the purpose to show the practicality and versatility of the method of kinematic analysis. Furthermore, the numerical results obtained by means of the theory of screws are successfully verified with the aid of commercially available software like ADAMS.

Keywords: parallel manipulator; kinematics; screw theory; forward kinematics; analysis

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.