LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geometry and Topology Optimization of Switched Reluctance Machines: A Review

Photo from wikipedia

Switched reluctance machines (SRMs) have recently attracted more interest in many applications due to the volatile prices of rare-earth permanent magnets (PMs) used in permanent magnet synchronous machines (PMSMs). They… Click to show full abstract

Switched reluctance machines (SRMs) have recently attracted more interest in many applications due to the volatile prices of rare-earth permanent magnets (PMs) used in permanent magnet synchronous machines (PMSMs). They also have rugged construction and can operate at high speeds and high temperatures. However, acoustic noise and high torque ripples, in addition to the relatively low torque density, present significant challenges. Geometry and topology optimization are applied to overcome these challenges and enable SRMs to compete with PMSMs. Key geometric design parameters are optimized to minimize various objective functions within geometry optimization. On the other hand, the material distribution in a particular design space within the machine domain may be optimized using topology optimization. We discuss how these techniques are applied to optimize the geometries and topologies of SRMs to enhance machine performance. As optimizing the machine geometry and material distribution at the design phase is of substantial significance, this work offers a comprehensive literature review on the current state of the art and the possible trends in the optimization techniques of SRMs. The paper also reviews different configurations of SRMs and stochastic and deterministic optimization techniques utilized in optimizing different configurations of the machine.

Keywords: topology; topology optimization; switched reluctance; reluctance machines; geometry

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.