LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Feature-Based On-Line Detector to Remove Adversarial-Backdoors by Iterative Demarcation

Photo by rgaleriacom from unsplash

This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line… Click to show full abstract

This paper proposes a novel feature-based on-line detection strategy, Removing Adversarial-Backdoors by Iterative Demarcation (RAID), for backdoor attacks. The proposed method is comprised of two parts: off-line training and on-line retraining. In the off-line training, a novelty detector and a shallow neural network are trained with clean validation data. During the on-line implementation, both models attempt to detect samples from the streaming data that differ from the validation data (i.e., flag likely-poisoned samples and possibly a few clean samples as false positives). An anomaly detector is used to purify the anomalous data by removing the clean samples. A binary support vector machine (SVM) is trained with the purified anomalous data and the clean validation data. RAID uses the SVM to detect poisoned inputs. To increase the accuracy as new anomalous data is being detected, the SVM is updated as well in real-time. It is shown that with updating, RAID can efficiently reduce the attack success rate while maintaining the classification accuracy against various types of backdoor attacks. The efficacy of RAID is compared against several state-of-the-art techniques. Additionally, it is shown that RAID only requires a small clean validation dataset to achieve such performance, and therefore provides a practical and efficient approach.

Keywords: backdoors iterative; based line; adversarial backdoors; line; detector; feature based

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.