This paper presents a new structure for non-isolated and non-inverting DC-DC converters with high voltage gain harnessing the fundamentals of the voltage lift technique. The proposed topology is a suitable… Click to show full abstract
This paper presents a new structure for non-isolated and non-inverting DC-DC converters with high voltage gain harnessing the fundamentals of the voltage lift technique. The proposed topology is a suitable structure for low voltage applications. The operation principles, the steady-state relations, and different switching strategies to further improve the voltage gain performance of the proposed converter are described. A hybrid utilization of complementary switching approach and simultaneous switching of two switches is proposed to achieve the highest voltage gain in different duty cycles. Furthermore, a theoretical analysis of power losses is provided. The suggested DC-DC converter architecture features high voltage gain, high efficiency, and low stress on semiconductor devices. In order to demonstrate these advantages, the structure is compared with some recently-presented high step-up converters in terms of efficiency, voltage gain, and voltage stress. Moreover, A 200W laboratory prototype is developed with experiments carried out to validate the given theories and feasibility of the proposed converter topology.
               
Click one of the above tabs to view related content.