LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

HaPouch: A Miniaturized, Soft, and Wearable Haptic Display Device Using a Liquid-to-Gas Phase Change Actuator

Photo from wikipedia

Wearable haptic displays can provide haptic information while allowing for free body movement. Among these haptic displays, pneumatic haptic displays have the advantages of flexibility and lightweight; however, they require… Click to show full abstract

Wearable haptic displays can provide haptic information while allowing for free body movement. Among these haptic displays, pneumatic haptic displays have the advantages of flexibility and lightweight; however, they require bulky air tubes and a heavy air compressor. To solve this problem, we propose a wearable haptic display that uses a liquid-to-gas phase change actuator and a Peltier device as a way to reduce the size of the entire system. A low-boiling-point liquid is encapsulated in the flexible bladder of the actuator, and the vaporization of the liquid, which induces the inflation of the actuator, is controlled by the external Peltier device. In this study, we implemented a pressure sensor to monitor pressure inside the liquid-to-gas phase change actuator. The pressure measurement will contribute to controlling the generated normal force. First, we characterized the pressure response concerning the design of the liquid-to-gas phase change actuator. Next, we evaluated the output normal force of the haptic display and confirmed that the maximum output force reached a few newtons, which is a similar level to the off-the-shelf wearable haptic display devices. Finally, a sensory evaluation revealed that the experimental participants perceived the haptic stimulus to their fingertips provided by the proposed haptic display in a few seconds. According to the obtained results, the proposed haptic display can be applied to applications such as human interfaces to provide force, allowing for a response time of a few seconds.

Keywords: gas phase; display; actuator; liquid gas; haptic display; wearable haptic

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.