LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Genetic Firefly Algorithm-Based Routing Protocol for VANETs

Photo by timmossholder from unsplash

Vehicular Adhoc Networks (VANETs) are used for efficient communication among the vehicles to vehicle (V2V) infrastructure. Currently, VANETs are facing node management, security, and routing problems in V2V communication. Intelligent… Click to show full abstract

Vehicular Adhoc Networks (VANETs) are used for efficient communication among the vehicles to vehicle (V2V) infrastructure. Currently, VANETs are facing node management, security, and routing problems in V2V communication. Intelligent transportation systems have raised the research opportunity in routing, security, and mobility management in VANETs. One of the major challenges in VANETs is the optimization of routing for desired traffic scenarios. Traditional protocols such as Adhoc On-demand Distance Vector (AODV), Optimized Link State Routing (OLSR), and Destination Sequence Distance Vector (DSDV) are perfect for generic mobile nodes but do not fit for VANET due to the high and dynamic nature of vehicle movement. Similarly, swarm intelligence routing algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) routing techniques are partially successful for addressing optimized routing for sparse, dense, and realistic traffic network scenarios in VANET. Also, the majority of metaheuristics techniques suffer from premature convergence, being stuck in local optima, and poor convergence speed problems. Therefore, a Hybrid Genetic Firefly Algorithm-based Routing Protocol (HGFA) is proposed for faster communication in VANET. Features of the Genetic Algorithm (GA) are integrated with the Firefly algorithm and applied in VANET routing for both sparse and dense network scenarios. Extensive comparative analysis reveals that the proposed HGFA algorithm outperforms Firefly and PSO techniques with 0.77% and 0.55% of significance in dense network scenarios and 0.74% and 0.42% in sparse network scenarios, respectively.

Keywords: firefly algorithm; algorithm based; genetic firefly; hybrid genetic; algorithm; network scenarios

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.