Similarity learning which is useful for the purpose of comparing various characteristics of images in the computer vision field has been often applied for deep metric learning (DML). Also, a… Click to show full abstract
Similarity learning which is useful for the purpose of comparing various characteristics of images in the computer vision field has been often applied for deep metric learning (DML). Also, a lot of combinations of pairwise similarity metrics such as Euclidean distance and cosine similarity have been studied actively. However, such a local similarity-based approach can be rather a bottleneck for a retrieval task in which global characteristics of images must be considered important. Therefore, this paper proposes a new similarity metric structure that considers the local similarity as well as the global characteristic on the representation space, i.e., class variability. Also, based on an insight that better class variability analysis can be accomplished on the Stiefel (or Riemannian) manifold, manifold geometry is employed to generate class variability information. Finally, we show that the proposed method designed through in-depth analysis of generalization bound of DML outperforms conventional DML methods theoretically and experimentally.
               
Click one of the above tabs to view related content.