LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Performance of Priority-Based Traffic Coexistence Strategies in 5G mmWave Industrial Deployments

Photo by homajob from unsplash

Recently standardized New Radio (NR) technology supports both ultra-reliable low-latency (URLLC) service and conventional enhanced mobile broadband (eMBB) service. Owing to extreme latency and reliability requirements an explicit prioritization needs… Click to show full abstract

Recently standardized New Radio (NR) technology supports both ultra-reliable low-latency (URLLC) service and conventional enhanced mobile broadband (eMBB) service. Owing to extreme latency and reliability requirements an explicit prioritization needs to be provided to URLLC service when these traffic types are mixed up at the air interface. In this work, we consider simultaneous support of these two services in an industrial environment, where production line equipment utilizes URLLC service for reorganization and synchronous operation while eMBB service is used for remote monitoring. By utilizing the tools of stochastic geometry and queuing theory, we formalize the model with pre-emptive priority service at NR base station (BS) with and without direct device-to-device (D2D) communications. Our numerical results indicate that the priority-based implementation of URLLC and eMBB coexistence allows us to isolate the former traffic efficiently and requires no external control. D2D-aware strategy, where the BS explicitly reserves some resources for direct communications, drastically outperforms those, where no explicit reservation is utilized, as well as the baseline strategy where all the traffic goes through the BS. This strategy can achieve 10−5 of URLLC drop probability when the baseline strategy produces just $5\times 10^{-3}$ , leading to three orders of magnitude reduction in drop probability and without significant impact produced on eMBB session drop probability. The developed model can be utilized to estimate the NR BS density required to support prescribed performance guarantees for all the considered strategies.

Keywords: strategy; coexistence; traffic; service; priority based

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.