LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Multiple Hypothesis Testing Based on a Sequential Discarding Scheme

Photo from wikipedia

We consider the quantum multiple hypothesis testing problem, focusing on the case of hypothesis represented by pure states. A sequential adaptive algorithm is derived and analyzed first. This strategy exhibits… Click to show full abstract

We consider the quantum multiple hypothesis testing problem, focusing on the case of hypothesis represented by pure states. A sequential adaptive algorithm is derived and analyzed first. This strategy exhibits a decay rate in the error probability with respect to the expected value of measurements greater than the optimal decay rate of the fixed-length methods. A more elaborated scheme is developed next, by serially concatenating multiple implementations of the first scheme. In this case each stage considers as a priori hypothesis probability the a posteriori probability of the previous stage. We show that, by means of a fixed number of concatenations, the expected value of measurements to be performed decreases considerably. We also analyze one strategy based on an asymptotically large concatenation of the initial scheme, demonstrating that the expected number of measurements in this case is upper bounded by a constant, even in the case of zero average error probability. A lower bound for the expected number of measurements in the zero error probability setting is also derived.

Keywords: hypothesis; hypothesis testing; scheme; quantum multiple; multiple hypothesis; probability

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.