LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sub-Band Assignment and Power Control for IoT Cellular Networks via Deep Learning

Photo from wikipedia

As various Internet of things (IoT) communication services have recently received great attention, the development of resource allocation scheme that can support the connection of a number of IoT devices… Click to show full abstract

As various Internet of things (IoT) communication services have recently received great attention, the development of resource allocation scheme that can support the connection of a number of IoT devices becomes an important task for next-generation communication systems. Motivated this challenge, we propose deep learning-based optimization algorithms for a joint resource allocation problem in uplink IoT cellular networks, in which the base station uses multiple sub-bands to serve IoT users and inter sub-band interference exists due to spectral leakage. Specifically, to maximize the achievable sum rate of IoT users with low complexity, we develop a two-stage optimization method built on convolutional neural networks (CNNs) that sequentially optimizes sub-band assignment and transmit power control. Moreover, in order to examine the performance according to the neural network structure, the proposed scheme is also implemented through fully-connected neural networks (FNNs) and compared with the CNN-based scheme. Simulation results show that our proposed CNN-based algorithm significantly improves the sum rate and reduces the required computation time compared to previous schemes without deep learning.

Keywords: sub band; iot cellular; deep learning; band assignment; cellular networks

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.