LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimized Deep Autoencoder Model for Internet of Things Intruder Detection

The development of an optimized deep learning intruder detection model that could be executed on IoT devices with limited hardware support has several advantages, such as the reduction of communication… Click to show full abstract

The development of an optimized deep learning intruder detection model that could be executed on IoT devices with limited hardware support has several advantages, such as the reduction of communication energy, lowering latency, and protecting data privacy. Motivated by these benefits, this research aims to design a lightweight autoencoder deep model that has a shallow architecture with a small number of input features and a few hidden neurons. To achieve this objective, an efficient two-layer optimizer is used to evolve a lightweight deep autoencoder model by performing simultaneous selection for the input features, the training instances, and the number of hidden neurons. The optimized deep model is constructed guided by both the accuracy of a K-nearest neighbor (KNN) classifier and the complexity of the autoencoder model. To evaluate the performance of the proposed optimized model, it has been applied for the N-baiot intrusion detection dataset. Reported results showed that the proposed model achieved anomaly detection accuracy of 99% with a lightweight autoencoder model with on average input features around 30 and output hidden neurons of 2 only. In addition, the proposed two-layers optimizer was able to outperform several optimizers such as Arithmetic Optimization Algorithm (AOA), Particle Swarm Optimization (PSO), and Reinforcement Learning-based Memetic Particle Swarm Optimization (RLMPSO).

Keywords: autoencoder; optimized deep; intruder detection; autoencoder model; model

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.