LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale Anisotropic Morphological Directional Derivatives for Noise-Robust Image Edge Detection

Photo from wikipedia

Different types of noise interference lead to low accuracy of image edge detection and severe loss of feature extraction details. A new noise-robust edge detection method is proposed, which uses… Click to show full abstract

Different types of noise interference lead to low accuracy of image edge detection and severe loss of feature extraction details. A new noise-robust edge detection method is proposed, which uses a set of multiscale anisotropic morphological directional derivatives to extract the edge map of an input image. The main advantage of the method is that high edge resolution is maintained while reducing noise interference. The following five parts form the whole framework of this paper. First, multiscale anisotropic morphologic directional derivatives (MSAMDDs) are proposed to filter and obtain the local gray value of the image. Second, the edge strength map (ESM) is extracted by using spatial matching filters. In the third stage, multiscale edge direction maps (EDMs) based on the directional matched filters are fused, and the new EDM is constructed. Fourth, edge contours are obtained by embedding the ESM and the EDM into the standard route of Canny detection. Finally, the precision-recall curve and Pratt’s figure of merit (FOM) are used to evaluate the proposed method against eight state-of-the-art methods on three data sets. The experimental results show that the proposed method can perform better for noise-free (F-measure value of 0.776) and Gaussian noise (FOM value of 95.75%) and attains the best performance in impulse noise images (highest FOM value of 98.90%).

Keywords: multiscale anisotropic; image; edge; edge detection; directional derivatives

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.