LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing Service Function Chaining Migration With Explicit Dynamic Path

Photo from wikipedia

Network Function Virtualization (NFV) can support customized on- demand network services with flexibility and cost-efficiency. Virtual Network Function (VNF) instances need to be scaled out, scaled in, and reallocated across… Click to show full abstract

Network Function Virtualization (NFV) can support customized on- demand network services with flexibility and cost-efficiency. Virtual Network Function (VNF) instances need to be scaled out, scaled in, and reallocated across the NFV infrastructure (NFVI) to avoid a violation of service agreements when the demand traffic changes. However, selecting the new placement of VNFs for migrating a service function chain (SFC) is an issue of efficient NFV control. We propose two novel integer linear programming (ILP) models and two approximation algorithms for SFC placement and migration to maximize the cost-efficiency of an NFV network regarding the changes of service demands and dynamic routing. The ILP models allow us to obtain the optimal solutions of SFC placement and migration with explicit dynamic paths. The approximation migration results provided by our proposed heuristic and reinforcement learning algorithms are close to the optimal solution. Evaluation results carried out with real datasets and synthetic network topologies provide a helpful suggestion of a migration strategy for an NFV service provider to optimize the operating cost of an NFV network in the long term.

Keywords: migration explicit; network; service; service function; migration

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.