The insulator in direct current gas-insulated transmission lines (DC-GIL) would suffer discharge risk due to surface charge accumulation under thermal-electric coupled fields. In this paper, the transient surface charge accumulation… Click to show full abstract
The insulator in direct current gas-insulated transmission lines (DC-GIL) would suffer discharge risk due to surface charge accumulation under thermal-electric coupled fields. In this paper, the transient surface charge accumulation characteristics of a basin-type DC-GIL insulator is investigated via finite element method based on a three-dimension horizontally installed GIL model. The stationary temperature distribution of the model is obtained and then applied to the transient simulation of charge. Weak form partial differential equation is employed to deal with the ion transportation equation. Equations and parameters in the simulation are optimized to reduce the computing memory and time. Results indicate that the charge accumulation is accelerated due to the promotion of conduction through the insulator under thermal gradient. Higher charge density is obtained under thermal gradient. And the surface charge density of the convex surface is higher due to the promoted conduction. The highest field strength increases and the corresponding location moves along the convex surface during the transient process. This could attribute to the influence of transient charge behavior under thermal gradient on the electric field distribution. This study indicates that the thermal gradient and transient charge accumulation should be considered when dealing with the insulation characteristics of DC-GIL with insulators.
               
Click one of the above tabs to view related content.