LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum Dilated Convolutional Neural Networks

Photo by profwicks from unsplash

In recent years, with rapid progress in the development of quantum technologies, quantum machine learning has attracted a lot of interest. In particular, a family of hybrid quantum-classical neural networks,… Click to show full abstract

In recent years, with rapid progress in the development of quantum technologies, quantum machine learning has attracted a lot of interest. In particular, a family of hybrid quantum-classical neural networks, consisting of classical and quantum elements, has been massively explored for the purpose of improving the performance of classical neural networks. In this paper, we propose a novel hybrid quantumclassical algorithm called quantum dilated convolutional neural networks (QDCNNs). Our method extends the concept of dilated convolution, which has been widely applied in modern deep learning algorithms, to the context of hybrid neural networks. The proposed QDCNNs are able to capture larger context during the quantum convolution process while reducing the computational cost.We perform empirical experiments on MNIST and Fashion-MNIST datasets for the task of image recognition and demonstrate that QDCNN models generally enjoy better performances in terms of both accuracy and computation efficiency compared to existing quantum convolutional neural networks (QCNNs).

Keywords: quantum dilated; neural networks; dilated convolutional; convolutional neural

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.