LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gaussian Regression Models for Evaluation of Network Lifetime and Cluster-Head Selection in Wireless Sensor Devices

Photo by zahraamiri_ from unsplash

The paper presents a model predictive approach for evaluating network lifetime and cluster head selection for a wireless sensor network. The dynamic parameters of a wireless sensor network are collected… Click to show full abstract

The paper presents a model predictive approach for evaluating network lifetime and cluster head selection for a wireless sensor network. The dynamic parameters of a wireless sensor network are collected using Smart Mesh IP Power and performance calculator. The study considers a machine learning approach to combine clustering with the optimal routing protocol. The hop depth, advertising, number of Motes, backbone, routing, reporting interval, payload size, downstream frame size, supply voltage, and path stability are the predictors, and the current consumption, data latency, and build time are the response variables to establish the models for estimating the power and performance of the network. The remaining energy in each node, distance from the base station, and data transmission rate are the predictors, and the priority of the cluster head is the response variable to establish models for achieving an optimal routing path in a wireless sensor network. The standard tree, Support Vector Machine, Ensemble, and Gaussian process regression models for lifetime estimation are analyzed in comparison with the Smart Mesh IP tool, and the models for cluster head selection are investigated in comparison with ANFIS based models. This novel approach concentrates on the effect of various dynamic parameters on network lifetime prediction.

Keywords: network; cluster head; wireless sensor; head selection; network lifetime

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.