LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Fault-Tolerant Consensus Based on the PBFT Algorithm

Nowadays Practical Byzantine Fault Tolerance (PBFT) algorithm has become the most extensive consensus algorithm in the alliance chain. However, the PBFT algorithm is usually only applicable to small networks due… Click to show full abstract

Nowadays Practical Byzantine Fault Tolerance (PBFT) algorithm has become the most extensive consensus algorithm in the alliance chain. However, the PBFT algorithm is usually only applicable to small networks due to high communication complexity and poor scalability. Although there have been many improved algorithms for PBFT in recent years, they ignore fault tolerance and democracy. Therefore, to meet the requirements of a high degree of decentralization and fault tolerance of blockchain-based scenarios. This paper proposes a high fault tolerance consensus algorithm NBFT, which follows the principle of decentralization and democratization of blockchain and ensures the improvement of performance in fault tolerance upper limit and scalability. First, we use the consistent hash algorithm to group the consensus nodes to avoid much communication between nodes, reduce the communication complexity of the network, and improve the scalability of the network. Second, to ensure the fault-tolerant ability of the grouping consensus, the nodal decision broadcast model and threshold vote-counting model are proposed first. Combined with the proposed two models, the joint fault analysis of nodes is carried out, and the fault tolerance upper limit is more than 1/3. Then, the Faulty Number Determined (FND) model is introduced to simulate the experiment, and the results are verified.

Keywords: pbft algorithm; fault; consensus; fault tolerance

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.