LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Energy Harvesting of Large-Scale Wind Farm Using Marine Predators Algorithm

Photo from wikipedia

A new optimal control strategy for the grid side converter (GSC) and rotor side converter (RSC) of a doubly-fed induction generator (DFIG) is developed in this paper using the Marine… Click to show full abstract

A new optimal control strategy for the grid side converter (GSC) and rotor side converter (RSC) of a doubly-fed induction generator (DFIG) is developed in this paper using the Marine Predators algorithm (MPA). To accomplish this study, a comprehensive comparison between the suggested MPA-based control strategy and a well matured Particle Swarm Optimizer (PSO) to enhance transient stability of large-scale wind systems has been presented. MPA is used to determine the optimal gains of proportional-integral (PI) controllers for GSC and RSC to ensure a maximum power point tracking (MPPT) of a large-scale wind farm. The proposed optimal control strategy is analyzed and verified via a benchmark 9-MW DFIG wind farm using MATLAB/SIMULINK simulation. The attained results of the suggested MPA-PI-based controllers are compared to the conventional PI-based MPPT controllers to validate the efficacy of the developed optimal control strategy. The superiority of the proposed MPA-PI and PSO-PI-based optimal controllers over the traditional PI regulators towards enhancing the DFIG system dynamic performance has been proved. The presented MPA-PI-based control scheme has been succeeded in extracting the maximum power of the DFIG wind farm with a reduced settling time of about 1.8% and overshooting range 97% lower than the conventional controller.

Keywords: large scale; control; scale wind; wind farm; wind

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.