LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Fast Weight Transfer Method for Real-Time Online Learning in RRAM-Based Neuromorphic System

Photo from wikipedia

In this work, a synaptic weight transfer method for a neuromorphic system based on resistive-switching random-access memory (RRAM) is proposed and validated. To implement the on-chip trainable neuromorphic system which… Click to show full abstract

In this work, a synaptic weight transfer method for a neuromorphic system based on resistive-switching random-access memory (RRAM) is proposed and validated. To implement the on-chip trainable neuromorphic system which utilizes large-scale hardware synapse units, a fast and reliable write scheme needs to be established. Based on the experimental results, it is confirmed that the gradual set and full reset operation is the most suitable operation scheme for fast programming due to the fundamental reliability characteristics of the resistive-switching memory cell. Also, the superiority of this programming method using the proposed RRAM compact model is demonstrated. In addition, a one weight/one synaptic device structure is newly adopted for realizing high-density synapse arrays by using a nonnegative weight constraint in supervised learning. Finally, the pattern recognition accuracies obtained at the software and hardware levels are compared.

Keywords: neuromorphic system; weight transfer; weight; transfer method

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.