LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-objective optimization of 400 kV Composite Insulator Corona Ring Design

Photo from wikipedia

The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds… Click to show full abstract

The electric field distribution is one of the main factors governing the long-term reliability of high voltage composite insulators. However, under severe pollution conditions, electric field stresses, when exceeding thresholds and applying for long periods, could lead to degradation and deterioration of the housing materials and, therefore, to failures of the composite insulators. This paper is intended to improve the electric field and potential distributions by minimizing the corona discharge on a 400 kV AC transmission line composite insulator. The performances of three powerful multi-objective meta-heuristic algorithms, namely Ant Lion Optimizer (MOALO), Particle Swarm Optimizer (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) are established to achieve this goal. First, variations of electrical fields on the critical parts of the string are obtained using three-dimensional finite element method (FEM) software. Then, three objective functions are developed to establish the relationships between the electric field and the guard ring parameters. Finally, the optimization parameters consist of diameter, tube diameter, and installation height of the corona ring. The obtained results confirm the effectiveness of the three algorithms; the MOLAO is the better in terms of computing time and solution quality.

Keywords: electric field; corona ring; multi objective; composite insulator

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.