LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis of Wave Propagation Models With Radio Network Planning Using Dual Polarized MIMO Antenna for 5G Base Station Applications

Photo by eddie2023 from unsplash

Dual polarized printed multiple input multiple output (MIMO) antenna for Band 42 (3.4 - 3.6 GHz) with wave propagation models is presented. Polarization and spatial diversity are achieved by utilizing… Click to show full abstract

Dual polarized printed multiple input multiple output (MIMO) antenna for Band 42 (3.4 - 3.6 GHz) with wave propagation models is presented. Polarization and spatial diversity are achieved by utilizing two printed bow-tie antennas in orthogonal orientation. The designed dual polarized antenna element with $2\times 2$ , $4\times 4$ and $8\times 8$ massive MIMO antenna configuration radiation patterns are deployed in selected geographical situation for detailed radio network planning using FEKO-WinProp platform. Knife edge diffraction, extended walfisch-ikegami and dominant path wave propagation models are implemented with designed MIMO antenna configurations. Modulation schemes of QPSK and QAM with corresponding data rates and throughput for all propagation models are presented. The signal strength and quality reflecting parameters reference signal received power (RSRP), received signal strength indicator (RSSI), reference signal received quality (RSRQ), and signal to noise plus interference ratio (SNIR) are also evaluated for each model. From the simulation results dominant path model provides data rate and throughput of 3.827, 995 MBit/s and 3.577, 930.1 MBit/s for single stream of data in uplink and downlink respectively. The maximum data rate of 1.37 GBits/s is achieved for deployed base stations with $8\times 8$ massive MIMO antenna configuration effectively covering the entire geographical site.

Keywords: inline formula; mimo antenna; propagation models; tex math

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.