LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Energy Efficiency Maximization of NOMA-aided Downlink Networks with Dynamic User Pairing

Photo by anniespratt from unsplash

This study investigates a combined system comprising non-orthogonal multiple access (NOMA) and beamforming in a downlink network. To fully exploit the advantages of NOMA, user (UE) pairing and beamforming design… Click to show full abstract

This study investigates a combined system comprising non-orthogonal multiple access (NOMA) and beamforming in a downlink network. To fully exploit the advantages of NOMA, user (UE) pairing and beamforming design are jointly optimized via a generalized model for UE association, subject to energy efficiency maximization. Owing to the combination of binary variables and nonconvex constraints, the resulting optimization problem belongs to the class of mixed-integer nonconvex programming. An innovative algorithm, integrating the inner-approximation and Dinkelbach methods, is proposed herein to address a nonconvex fractional function. By introducing a pairing matrix and relaxing the binary variables into continuous ones, our approach is capable of reaching an optimal solution, where two arbitrary UEs are optimally paired regardless of geographical or spatial constraints. For practical scenarios, we further propose a robust design to manage the effect of channel estimation errors under settings involving channel uncertainty. Numerical results show that our proposed designs, even with the presence of the imperfect channel state information at the base station, significantly outperform the conventional beamforming and existing pairing schemes.

Keywords: user pairing; efficiency maximization; noma; energy efficiency; downlink

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.