LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite-time Fault-Tolerant Control for a Stewart Platform using Sliding Mode Control with Improved Reaching Law

Photo by charlesdeluvio from unsplash

In this paper, a fault-tolerant control (FTC) is proposed for a nonlinear system as a Stewart platform (SP). To reject the singularity issue of a traditional fast terminal sliding mode… Click to show full abstract

In this paper, a fault-tolerant control (FTC) is proposed for a nonlinear system as a Stewart platform (SP). To reject the singularity issue of a traditional fast terminal sliding mode control (FTSMC) and to have a fast finite-time convergence, a nonsingular fast terminal sliding mode control (NFTSMC) is used. In addition, an extended state observer (ESO) is applied for the control scheme to estimate uncertainties, disturbances, and faults. To increase the convergence speed and alleviate the chattering phenomenon, a novel reaching law is proposed which gives the system a quick reaching speed. Finally, a novel FTC that ensures robustness to disturbances and faults is developed based on the NFTSMC, the ESO, and the proposed reaching law. Consequently, the proposed FTC has outstanding features such as high tracking performance, a decrease of the effects of disturbances and faults, a fast convergence speed in finite time, and less chattering. The simulation and experiment results demonstrate the efficiency of the proposed FTC compared to other control schemes.

Keywords: sliding mode; mode control; control; finite time; reaching law

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.