LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Anomaly Detection via Multihead Dynamic Graph Attention Networks for Multivariate Time Series

Photo from wikipedia

In the real world, a large number of multivariate time series data are generated by Internet of Things systems, which are composed of many connected sensing devices. Therefore, it is… Click to show full abstract

In the real world, a large number of multivariate time series data are generated by Internet of Things systems, which are composed of many connected sensing devices. Therefore, it is impractical to consider only a single univariate time series for decision-making. High-dimensional time series decrease the performance of traditional anomaly detection methods. Moreover, many previously developed methods capture temporal correlations instead of spatial correlations. Therefore, it is necessary to learn the temporal and spatial correlations between different time series and timestamps. In this paper, to achieve improved anomaly detection performance for multivariate time series, we propose a novel architecture based on a graph attention network (GAT) with multihead dynamic attention (MDA). This framework simultaneously learns the dependencies between sensors in both the temporal and spatial dimensions. To tackle the overfitting problem in autoencoder (AE)-based methods, we propose a hybrid approach that combines a novel generative adversarial network (GAN) architecture as a reconstruction model with a multilayer perceptron (MLP) as a prediction-based model to detect anomalies together. The detection framework proposed in this paper is called the HAD-multihead dynamic GAT (MDGAT). Extensive experiments on different public benchmarks demonstrate the superior performance of HAD-MDGAT over state-of-the-art methods.

Keywords: time; anomaly detection; multivariate time; time series

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.