LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Sewer Defect Detection With Text Analysis Based on Deep Learning

Photo from wikipedia

Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are… Click to show full abstract

Sewerage systems play a vital role in building modern cities, providing appropriate ways to release liquid wastes. Due to the rapid expansion of cities, the deterioration of sewage pipes are increasing. Hence, systematic maintenance methods are require to overcome this problem. In most cases, sewer inspection is done by human inspectors, which is error-prone, time-consuming, costly, and lacking appropriate survey evaluations. In this paper, we introduce a new automated framework for detecting sewage pipe defects based on the attention mechanism, improved YOLOv5 architecture, and location information recognition from CCTV videos. The main contributions include (1) the addition of a micro-scale detection feature in the layers to improve the defect detection mechanism; (2) the application of a convolutional block attention module for better channel/spatial features; (3) construction of a larger defect-detection dataset for the 12 most common defect types; and (4) implementation of the TPS-ResNet-BiLSTM-Attn (TRBA) model for the text-information recognition mechanism from CCTV videos. The experimental results show that the proposed real-time sewer defect detection model achieved the mean average precision (mAP) of 75.9% on the proposed dataset, outperforming other standard models, such as YOLO and SSD.

Keywords: sewer defect; detection; robust sewer; defect detection

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.