LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust Change Detection using Channel-Wise Co-Attention-Based Twin Network with Contrastive Loss Function

Photo by rossfindon from unsplash

Change detection methods aim to identify significantly changed areas in co-registered bitemporal images taken of the same area. Since not only do bitemporal images usually have different environmental conditions (i.e.,… Click to show full abstract

Change detection methods aim to identify significantly changed areas in co-registered bitemporal images taken of the same area. Since not only do bitemporal images usually have different environmental conditions (i.e., different weather conditions, noises, and seasonal changes) but also changes irrelevant to the purpose of change detection (e.g., road changes when detecting building change), which should not be detected as changed areas, change detection methods often suffer from the problem of pseudo-change detection. To alleviate this problem, we propose an encoder-decoder-based twin network (also known as a Siamese network) with a channel-wise co-attention module that considers the channel-wise correlations between a feature map in one image and all feature maps in the other image. By comparing the feature map in one image with the revised feature map in the other image considering the correlations, we are able to reduce the differences between the feature maps when pseudo-changes exist, thereby rendering the proposed method more robust to pseudo-changes. In addition, we apply a contrastive loss function that encourages the pairs of feature maps corresponding to unchanged regions to be similar, which can help improve the performance of change detection.We verified the performance of the proposed method through experiments using datasets such as the change detection dataset (CDD) and building change detection dataset (BCDD). In the experiment, the proposed method achieved significantly improved performance compared with existing methods in terms of recall, precision, f1-score, and overall accuracy.

Keywords: channel wise; change detection; network; detection

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.