LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deadbeat Control with Bivariate Online Parameter Identification for SPS-modulated DAB Converters

Photo by szolkin from unsplash

Deadbeat control is considered an efficient method of controlling dual active bridge (DAB) converters among the different control methods presented in recent years. The conventional deadbeat control is heavily reliant… Click to show full abstract

Deadbeat control is considered an efficient method of controlling dual active bridge (DAB) converters among the different control methods presented in recent years. The conventional deadbeat control is heavily reliant on the precise values of the system model parameters. However, in DAB converters, system model parameters such as series inductance and output capacitance suffer from mismatches due to operating conditions, manufacturing tolerance, and aging. Thus, the inevitable result is degradation in the steady-state and dynamic performance of the output voltage. In order to compensate for this drawback of deadbeat control, this study proposes an adaptive online parameter identification approach for DAB converters operating under single phase-shift (SPS) modulation. From the matrix form of linear equations in deadbeat control, the least-squares analysis (LSA) approach is utilized to solve the solution by a simple 2-by-2 matrix inverse calculation. Thus, series inductance and output capacitance are identified straightforwardly. Meanwhile, the predicted value of the phase-shift ratio is updated using sampled measurement values in deadbeat control after every sampling step, which can control the output voltage. The benefits of the proposed algorithm are demonstrated by theoretical analysis, simulation, and experimental results under a variety of parameter mismatches and operational circumstances.

Keywords: dab converters; deadbeat control; online parameter; control; parameter identification

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.