Nonstationary stochastic systems in the Wiener-Kolmogorov sense have properties defined by their moments of probability, entropy, and distribution function. Filtering Theory, in general, describes indirectly, a stochastic system through the… Click to show full abstract
Nonstationary stochastic systems in the Wiener-Kolmogorov sense have properties defined by their moments of probability, entropy, and distribution function. Filtering Theory, in general, describes indirectly, a stochastic system through the processes of parameter estimation and state identification. The objective of this article is to develop a Recursive Filter with an Exponential Kernel (RFEK) to reconstruct the response of a nonstationary stochastic system. To achieve this, first, a system viewed as a Black Box (BB) is analyzed. These systems are those whose internal dynamics are unknown, only their input-output is known from a set of responses measured with respect to a particular excitation. From these measurements and applying the proposed filter, a set of estimated parameters and identified states are obtained as a characterization of the system. Subsequently, a comparison is made between the filter output signal and the reference signal over time; that is, measuring their point-to-point convergence. The convergence of the stochastic reference makes it possible to indirectly observe its stability from a bounded estimation region. As a case study, bioelectric signals of the electroencephalographic (EEG) type are analyzed giving an improved approximation with respect to the Kalman filter results.
               
Click one of the above tabs to view related content.