LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Architecture for Cellular IoT in Future Non-Terrestrial Networks: Store and Forward Adaptations for enabling Discontinuous Feeder Link Operation

Photo from wikipedia

The Internet of Things (IoT) paradigm has already progressed from an emerging technology to an incredibly fast-growing field. Defined as one of the three key services in 5th Generation (5G),… Click to show full abstract

The Internet of Things (IoT) paradigm has already progressed from an emerging technology to an incredibly fast-growing field. Defined as one of the three key services in 5th Generation (5G), massive Machine Type Communications (mMTC) are intended to enable the wide-spread adoption of IoT services across the globe. Satellite-based Non-Terrestrial Networks (NTN) are crucial in providing connectivity with global coverage including rural and offshore areas, that are fundamental to support important use cases in future networks. A rapidly growing market for IoT devices with mMTC applications using NarrowBand-IoT (NB-IoT) will represent a large share of user equipment (UE) in such areas. While standardization efforts for NTN are underway for forthcoming 3GPP releases, they focus on transparent payload architectures where the satellite platform is necessarily connected to a ground station gateway to be able to provide satellite access services to the IoT devices, thus requiring complex ground segment infrastructure in low Earth orbit (LEO) constellation deployments for achieving global coverage. In contrast, satellite network deployments targeting the delivery of delay-tolerant IoT applications using NB-IoT, which are a major mMTC use case, can benefit from architectures based on the use of regenerative payloads in the satellite and support for Store and Forward (S&F) operation where satellite access can remain operational even at times when the satellite is not connected to a ground station. In particular, such an approach would allow for extending satellite service coverage in areas where satellites cannot be connected to ground stations (e.g. maritime or very remote areas with lack of ground-stations infrastructures), improving ground segment affordability by enabling operation with fewer ground-stations and allowing more robust operation of the satellite under intermittent feeder link operation. In this paper, we provide a high-level design of an extended 3GPP architecture featuring store and forward mechanisms for IoT NTN delay-tolerant applications that addresses the previous challenges, as well as a laboratory validation of said architecture for a specific use case.

Keywords: operation; ground; store forward; architecture; iot; non terrestrial

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.