LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Learning-Based Hybrid Analog-Digital Signal Processing in mmWave Massive-MIMO Systems

Photo from wikipedia

Hybrid analog-digital signal processing (HSP) is an enabling technology to harvest the potential of millimeter-wave (mmWave) massive-MIMO communications. In this paper, we present a general deep learning (DL) framework for… Click to show full abstract

Hybrid analog-digital signal processing (HSP) is an enabling technology to harvest the potential of millimeter-wave (mmWave) massive-MIMO communications. In this paper, we present a general deep learning (DL) framework for efficient design and implementation of HSP-based massive-MIMO systems. Exploiting the fact that any complex matrix can be written as a scaled sum of two matrices with unit-modulus entries, a novel analog deep neural network (ADNN) structure is first developed which can be implemented with common radio frequency (RF) components. This structure is then embedded into an extended hybrid analog-digital deep neural network (HDNN) architecture which facilitates the implementation of mmWave massive-MIMO systems while improving their performance. In particular, the proposed HDNN architecture enables HSP-based massive-MIMO transceivers to approximate any desired transmitter and receiver mapping with arbitrary precision. To demonstrate the capabilities of the proposed DL framework, we present a new HDNN-based beamformer design that can achieve the same performance as fully-digital beamforming, with reduced number of RF chains. Finally, simulation results are presented confirming the advantages of the proposed HDNN design over existing hybrid beamforming schemes.

Keywords: mimo; mimo systems; massive mimo; hybrid analog; mmwave massive; analog digital

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.