LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fundamental Limits on the Uplink Performance of the Dynamic-Ordered SIC Receiver

Photo from wikipedia

Due to the rapid and widespread growth of the Internet-of-Things (IoT) paradigm, present days witness an exponential increase in the number of connected devices. In this regard, the orthogonal transmission… Click to show full abstract

Due to the rapid and widespread growth of the Internet-of-Things (IoT) paradigm, present days witness an exponential increase in the number of connected devices. In this regard, the orthogonal transmission techniques featured by conventional 4G and 5G systems can only support a limited number of simultaneously active users, due to their low spectral efficiency and poorly flexible resource allocation. To overcome such limitations, the 6G framework will include novel Next Generation Multiple Access (NGMA) solutions that will efficiently and flexibly connect a significantly larger number of devices over the same portion of spectrum. Under the NGMA umbrella, the Power-Domain Non-Orthogonal Multiple Access (PD-NOMA) technology is able to accommodate multiple users on the same frequencies by carefully assigning different power levels to the active users and employing Successive Interference Cancellation (SIC) receivers. In this work, we put forth a novel analytical approach to evaluate the performance that PD-NOMA achieves on the uplink of a single cell when a dynamic-ordered SIC receiver is considered. With respect to other existing works, the fundamental limits on the system performance are assessed analytically for an arbitrary number $n$ of simultaneously transmitting users, and both the case of Rayleigh and lognormal-shadowed Rayleigh fading are examined. The closed-form expressions presented in this work, whose correctness and excellent accuracy are validated through Monte Carlo simulations, disclose the impact of lognormal shadowing and an increasingly larger number of active users on the PD-NOMA performance.

Keywords: ordered sic; number; sic receiver; dynamic ordered; performance; fundamental limits

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.