LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Face Recognition With Masks Based on Spatial Fine-Grained Frequency Domain Broadening

Photo by isabellwinter from unsplash

Along with social distancing, wearing masks is an effective method of preventing the transmission of COVID-19 in the ongoing pandemic. However, masks occlude a large number of facial features, preventing… Click to show full abstract

Along with social distancing, wearing masks is an effective method of preventing the transmission of COVID-19 in the ongoing pandemic. However, masks occlude a large number of facial features, preventing facial recognition. The recognition rate of existing methods may be significantly reduced by the presence of masks. In this paper, we propose a method to effectively solve the problem of the lack of facial feature information needed to perform facial recognition on people wearing masks. The proposed approach uses image super-resolution technology to perform image preprocessing along with a deep bilinear module to improve EfficientNet. It also combines feature enhancement with frequency domain broadening, fuses the spatial features and frequency domain features of the unoccluded areas of the face, and classifies the fused features. The features of the unoccluded area are increased to improve the accuracy of recognition of masked faces. The results of a cross-validation show that the proposed approach achieved an accuracy of 98% on the RMFRD dataset, as well as a higher recognition rate and faster speed than previous methods. In addition, we also performed an experimental evaluation in an actual facial recognition system and achieved an accuracy of 99%, which demonstrates the effectiveness and practicability of the proposed method.

Keywords: recognition; frequency domain; facial recognition; domain broadening

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.