LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Intersection of Explainable and Reliable AI for Physical Fatigue Prediction

Photo from wikipedia

In the era of Industry 4.0, the use of Artificial Intelligence (AI) is widespread in occupational settings. Since dealing with human safety, explainability and trustworthiness of AI are even more… Click to show full abstract

In the era of Industry 4.0, the use of Artificial Intelligence (AI) is widespread in occupational settings. Since dealing with human safety, explainability and trustworthiness of AI are even more important than achieving high accuracy. eXplainable AI (XAI) is investigated in this paper to detect physical fatigue during manual material handling task simulation. Besides comparing global rule-based XAI models (LLM and DT) to black-box models (NN, SVM, XGBoost) in terms of performance, we also compare global models with local ones (LIME over XGBoost). Surprisingly, global and local approaches achieve similar conclusions, in terms of feature importance. Moreover, an expansion from local rules to global rules is designed for Anchors, by posing an appropriate optimization method (Anchors coverage is enlarged from an original low value, 11%, up to 43%). As far as trustworthiness is concerned, rule sensitivity analysis drives the identification of optimized regions in the feature space, where physical fatigue is predicted with zero statistical error. The discovery of such “non-fatigue regions” helps certifying the organizational and clinical decision making.

Keywords: fatigue prediction; explainable reliable; fatigue; reliable physical; physical fatigue; intersection explainable

Journal Title: IEEE Access
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.